Felhívások

Közeli határidők



ALAPKÉPZÉS

Közeli határidők

CfP: Special Issue

The journal Social Sciences (ISSN 2076-0760) is currently running a Special Issue entitled WORK-FAMILY BALANCE AND GENDER (IN)EQUALITIES IN EUROPE: POLICIES, PROCESSES AND PRACTICES.

MAGISZTERI

Közeli határidők

CfA: PhD, Friedrich-Alexander-Universitaet Erlangen-Nuernberg


Aus Mitteln der VolkswagenStiftung kann zum 1.10.2018 an der Friedrich-Alexander-Universität Erlangen-Nürnberg das Forschungskolleg „Modellierung von Kulturgeschichte am Beispiel des Germanischen Nationalmuseums: Vermittlungskonzepte für das 21. Jahrhundert“ eingerichtet werden, das der Lehrstuhl für Kunstgeschichte gemeinsam mit dem Germanischen Nationalmuseum (GNM) konzipiert hat.

Phd / DLA

Közeli határidők

CfP: Special Issue

The journal Social Sciences (ISSN 2076-0760) is currently running a Special Issue entitled WORK-FAMILY BALANCE AND GENDER (IN)EQUALITIES IN EUROPE: POLICIES, PROCESSES AND PRACTICES.

POSZTDOKTORI

Közeli határidők



FIATAL KUTATÓI

Közeli határidők

CfP: Special Issue

The journal Social Sciences (ISSN 2076-0760) is currently running a Special Issue entitled WORK-FAMILY BALANCE AND GENDER (IN)EQUALITIES IN EUROPE: POLICIES, PROCESSES AND PRACTICES.

OKTATÓI


Jelenlegi oktatási szint:
I would like to receive Call for Applications/Papers for:
  

KÉPZÉSI SZINT
Alapképzés
Magiszteri
PhD / DLA
Posztdoktori
Fiatal kutatói
Oktatói
Kutatói
Doktorjelölt
Frissen végzett
TUDOMÁNYTERÜLET
FELHÍVÁS TÍPUSA
CÉLORSZÁG
Szűrő
Megszüntet

Statistical Thinking in Python - Course


Prior to diving in headlong into sophisticated statistical inference techniques, you should first explore your data by plotting them and computing simple summary statistics.

Course Description

After all of the hard work of acquiring data and getting them into a form you can work with, you ultimately want to make clear, succinct conclusions from them. This crucial last step of a data analysis pipeline hinges on the principles of statistical inference.

In this course, you will start building the foundation you need to think statistically, to speak the language of your data, to understand what they are telling you.
The foundations of statistical thinking took decades upon decades to build, but they can be grasped much faster today with the help of computers. With the power of Python-based tools, you will rapidly get up to speed and begin thinking statistically by the end of this course.

Graphical exploratory data analysis

Look before you leap! A very important proverb, indeed. Prior to diving in headlong into sophisticated statistical inference techniques, you should first explore your data by plotting them and computing simple summary statistics. This process, called exploratory data analysis, is a crucial first step in statistical analysis of data. So it is a fitting subject for the first chapter of Statistical Thinking in Python.

Further information are available on the webpage.

(forrás: www.datacamp.com)

Oszd meg a Facebookon